

QUESTION PAPER

Maximum Marks:40

PERIODIC TEST

CLASS	SECTION	EXAM CODE
8	ROSE	4199651
8	TULIP	4199641

SCHOOL

Him Academy Public School - Hira Nagar

test. Once submitted, the answers cannot be changed.

^{1.} There are 28 questions in this paper. 20 of these are with options and 8 are without options. All are compulsory.

The questions with options carry 1 mark each. The marks for questions without options have been mentioned beside it.
Please check your answers carefully before submitting the

CLASS 8

SET NO 1

SECTION A

MCQs

Q: 1 Which of these is/are rational number(s)?

$$i) - \frac{-14}{6}$$
 | ii) 0 | iii) - 100

- **1** only (i)
- 3 only (ii) and (iii)

- 2 only (i) and (iii)
- 4 all (i), (ii) and (iii)

Q: 2 For what value of k is the expression $\frac{k-5}{k+3}$ undefined?

1 0

2 3

3 -3

4 5

Q: 3 For which of these operations are rational numbers NOT associative?

- 1 both addition and subtraction
- 2 both multiplication and division
- 3 both addition and multiplication
- 4 both subtraction and division

Q: 4 Which of the following is equal to 99×98 ?

(Note: You need not actually solve, use properties.)

- 1 (9800 98)
- 2 (9800 1)
- 3 (9900 2)
- 4 (10000 2)

Q: $5 \Rightarrow is$ an operation, such that $a \Rightarrow b = c$, where a and b are rational numbers.

Dana noted that as long as a and b are rational numbers, c is always a rational number.

Which of these properties did Dana note for ♦?

- 1 Closure
- 2 Associativity
- 3 Distributivity
- 4 Commutativity

Q: 6 Which of the following correctly demonstrates the commutative property?

$$\frac{1}{2}\left[-\frac{1}{5}-\left(\frac{3}{5}-\frac{6}{7}\right)\right]$$

$$=\frac{1}{2}[(-\frac{1}{5}-\frac{3}{5})+\frac{6}{7}].....step 1$$

$$=\frac{1}{2}\left(-\frac{1}{5}-\frac{3}{5}\right)+\frac{1}{2}\times\frac{6}{7}$$
.....step 2

$$=-\frac{2}{5}+\frac{3}{7}$$

$$=\frac{3}{7}-\frac{2}{5}$$
step 3

$$=\frac{1}{35}$$

- 1 only step 1
- **3** step 3

- **2** step 2
- 4 both steps 1 and 3

CLASS 8

SET NO **1**

Q: 7 m and n are any two non zero integers. Which of the following need not be an integer?

2 m × n

4 (All the above are integers.)

Q: 8 2 t - 1 = 5 - t. What is t?

$$\frac{4}{3}$$

4 6

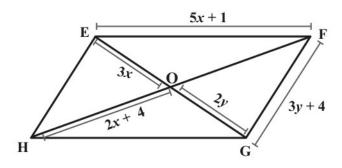
Q: 9 If $\frac{t}{54} = \frac{2}{9}$, then t is

Q: $10 \ 1 - 7 \ n = 17 - 5 \ n$. What is n?

Q: 11 5(n + 2) = 40 + 3 n.

What is n?

Q: 12 Given below is a linear equation in one variable:


$$\frac{3}{2}y - 3 = \frac{1}{2}y - 2$$

Which of these gives the value of y?

1
$$(-\frac{5}{2})$$

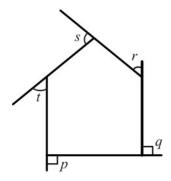
$$\frac{1}{2}$$

Q: 13 Which of these must be true if the given quadrilateral EFGH is a parallelogram?

1
$$3 x = 2 y$$

$$3 x = 2x + 4$$

2
$$2y = 2x + 4$$


4
$$5x + 1 = 3y + 4$$

CLASS 8

 $_{\text{SET NO}}$

Q: 14 In the following figure p, q, r, s and t are the measures of the angles marked.

p+q+r+s+t=

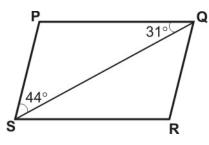
1 360°

2 450°

3 540°

4 (We cannot say without knowing the individual angles.)

 $\frac{Q: 15}{PQRS}$ is a quadrilateral with PQ = QR and RS = SP. From this we can say that PQRS is DEFINITELY a

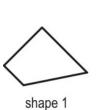

1 kite.

2 square.

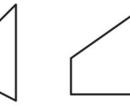
3 rhombus.

4 parallelogram.

Q: 16 What is the measure of ∠PQR in the parallelogram PQRS given below?


1 62°

3 88°


2 75°

4 105°

Q: 17 Which of these shapes is/are trapeziums?

e 1 shape 2

shape 3

1 only shape 2

3 only shapes 2 and 3

2 only shapes 1 and 2

4 all shapes 1, 2 and 3

CLASS 8

SET NO 1

Q: 18 Which of these is DEFINITELY a square?

- 1 A rectangle with its diagonals equal.
- 2 A rectangle with its diagonals equal and bisect each other.
- 3 A quadrilateral with diagonals equal and perpendicular to each other.
- 4 A parallelogram with its sides equal and diagonals perpendicular to each other.

Q: 19 Parallelograms are classified according to their diagonal properties in the table below.

	Diagonals intersect at 90°	Diagonals do not intersect at 90°
Diagonals equal	1	2
Diagonals are not equal	3	4

A quadrilateral that fits in cell 3 of this classification table MUST be

- 1 a square
- 2 a rectangle
- **3** a trapezium
- 4 a rhombus

Q: 20 The length of the side of a rhombus is 10 cm. One of its diagonals is 16 cm long. What is the length of its other diagonal?

- 1 4 cm
- **2** 6 cm
- **3** 12 cm
- **4** 16 cm

SECTION B

Very Short Answer

Q: 21 Given that, $(\frac{-p}{q} \times \frac{2}{3}) \times \frac{3}{5} = 1$, find one possible value of each p and q.

[2]

Show your work.

Q: 22 Verify (a + b) + c = a + (b + c) for $a = \frac{7}{4}$, $b = \frac{-5}{6}$ and $c = \frac{5}{3}$.

[2]

Show your steps.

Q: 23 Solve the following linear equation for x.

[2]

$$2.5 x + 1.8 = 4(x - 0.9)$$

Q: 24 PQRS is a quadrilateral such that O is the point of intersection of its diagonals PR and [2] QS. OP = OR, OS = OQ and $\angle Q = 90^{\circ}$.

Which parallelogram will it DEFINITELY be? Justify your answer.

SECTION C

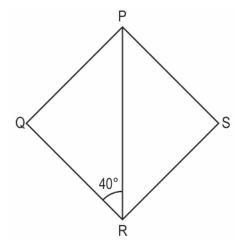
Short Answer

Periodic Test CLASS 8 SET NO 1

Q: 25 Use appropriate properties to prove that:

[3]

 $\{(\frac{3}{2} \times \frac{14}{5} \times \frac{2}{3}) \times (\frac{1}{7} + \frac{1}{2})\} \times \{(\frac{5}{9})\} = \frac{5}{6} \{\frac{2}{5} + \frac{12}{15}\}.$ Show your work.


Q: 26 Find the value of x and verify your result. [3]

$$3(2 x + 2) + 5 = \frac{3x+1}{5}$$

Show your steps.

Q: 27 [3]

Shown below is a rhombus PQRS with $\angle QRP = 40^{\circ}$.

What is the measure of ∠RSP? Show your work.

Q: 28 In a regular polygon, the ratio of an interior angle to its corresponding exterior angle [3] is 4:1.

Determine the number of sides of the polygon. Show your work.

End of Questions in Paper

