



**Rubrics** 

1. The table below gives the correct answer for each multiple-choice question in this test across version 1. All 4 versions have the same order of questions, hence this can be used for other versions too.

2. If you are evaluating these questions on paper, please award the student 1 mark for choosing the right option for each question.

| Q.No | Correct Answers - Version 1 |
|------|-----------------------------|
| 1    | D                           |
| 2    | С                           |
| 3    | D                           |
| 4    | Α                           |
| 5    | Α                           |
| 6    | С                           |
| 7    | С                           |
| 8    | В                           |
| 9    | В                           |
| 10   | В                           |
| 11   | С                           |
| 12   | D                           |
| 13   | Α                           |
| 14   | Α                           |
| 15   | A                           |
| 16   | В                           |
| 17   | D                           |
| 18   | С                           |
| 19   | D                           |
| 20   | С                           |





Maths Periodic Test

CLASS 8

**Rubrics** 

| Q.No | What to look for                                                                                                                        | Marks |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| 21   | Uses associative property of multiplication to rewrite the above equation as:                                                           | 1     |
|      | $-\frac{p}{q}\times(\frac{2}{3}\times\frac{3}{5})=1$                                                                                    |       |
|      | Further simplifies the above equation as:                                                                                               |       |
|      | $\frac{p}{q} = -\frac{5}{2}$                                                                                                            |       |
|      | From the above, concludes that $p=(-5\ x)$ and $q=2\ x$ OR $p=5\ x$ and $q=(-2\ x)$ , where $x\neq 0$ .                                 | 1     |
|      | Thus, finds one possible value of $p$ and $q$ , for example, $p$ = (-10), $q$ = 4 OR $p$ = 10, $q$ = (-4), considering $x$ = 2.         |       |
| 22   | Substitutes the values of $a$ , $b$ and $c$ and find the value of ( $a+b$ ) + $c$ as $\frac{31}{12}$ . The working may look as follows: | 1     |
|      | $(\frac{7}{4} + \frac{-5}{6}) + \frac{5}{3}$                                                                                            |       |
|      | $= \left(\frac{21}{12} + \frac{-10}{12}\right) + \frac{5}{3}$                                                                           |       |
|      | $=\frac{11}{12}+\frac{5}{3}$                                                                                                            |       |
|      | $=\frac{11}{12}+\frac{20}{12}$                                                                                                          |       |
|      | $=\frac{31}{12}$                                                                                                                        |       |
|      | Substitutes the values of $a$ , $b$ and $c$ and find the value of $a+(b+c)$ as $\frac{31}{12}$ . The working may look as follows:       | 1     |
|      | $\frac{7}{4} + (\frac{-5}{6} + \frac{5}{3})$                                                                                            |       |
|      | $=\frac{7}{4}+\left(\frac{-5}{6}+\frac{10}{6}\right)$                                                                                   |       |
|      | $=\frac{7}{4}+\frac{5}{6}$                                                                                                              |       |
|      | $=\frac{21}{12}+\frac{10}{12}$                                                                                                          |       |
|      | $=\frac{31}{12}$                                                                                                                        |       |
|      | From the two steps, concludes that $(a + b) + c = a + (b + c)$ .                                                                        |       |





| Q.No | What to look for                                                                                                                                  | Marks |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 23   | Simplifies the RHS of the above equation as:                                                                                                      | 0.5   |
|      | 2.5 x + 1.8 = 4 x - 3.6.                                                                                                                          |       |
|      | Isolates the like terms, the terms with $\boldsymbol{x}$ on one side and the constant terms on the other side to get:                             | 0.5   |
|      | 1.8 + 3.6 = 4 x - 2.5 x                                                                                                                           |       |
|      | Simplifies both sides as:                                                                                                                         | 0.5   |
|      | 5.4 = 1.5 x                                                                                                                                       |       |
|      | Solves the equation and gets $x = 3.6$ .                                                                                                          | 0.5   |
| 24   | i) Writes that, the parallelogram will DEFINITELY be a rectangle.                                                                                 | 1     |
|      | Justifies the answer. For example, writes that, the diagonals of the quadrilateral bisect each other and one angle is 90°. So, it is a rectangle. | 1     |
| 25   | Uses commutative property to re-write the LHS of the above expression as:                                                                         | 1.5   |
|      | $\{(\frac{3}{2} \times \frac{2}{3} \times \frac{14}{5}) \times (\frac{1}{7} + \frac{1}{2})\} \times \{(\frac{5}{9})\}$                            |       |
|      | Simplifies the above expression as:                                                                                                               |       |
|      | $\{\frac{14}{5} \times \frac{9}{14}\} \times \{(\frac{5}{9})\} = 1$                                                                               |       |
|      | Uses distributive property to re-write the RHS of the above expression as:                                                                        | 1.5   |
|      | $\frac{5}{6} \times \frac{2}{5} + \frac{5}{6} \times \frac{12}{15}$                                                                               |       |
|      | Further simplifies the above expression to get RHS = 1.                                                                                           |       |
|      | Thus, shows that LHS = RHS.                                                                                                                       |       |





Maths Periodic Test

CLASS 8

**Rubrics** 

| Q.No | What to look for                                                                                                                                                  | Marks |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 26   | Simplifies the given equation as:                                                                                                                                 | 2     |
|      | $6 x + 6 + 5 = \frac{3x+1}{5}$                                                                                                                                    |       |
|      | $=> 6 x + 11 = \frac{3x+1}{5}$                                                                                                                                    |       |
|      | =>30 x + 55 = 3 x + 1                                                                                                                                             |       |
|      | => 27 x = (-54)                                                                                                                                                   |       |
|      | =>x=(-2)                                                                                                                                                          |       |
|      | Substitutes the value $x = (-2)$ in the left-hand side (LHS) of the equation and simplifies it as:                                                                | 1     |
|      | $3{2 \times (-2) + 2} + 5 = (-1).$                                                                                                                                |       |
|      | Substitutes the value $x = (-2)$ in the right hand side (RHS) of the equation and simplifies it as:                                                               |       |
|      | $\frac{3\times(-2)+1}{5}=(-1).$                                                                                                                                   |       |
|      | Hence, verifies that LHS = RHS.                                                                                                                                   |       |
| 27   | Mentions that alternate angles are equal and concludes that $\angle$ SPR = $\angle$ QRP = 40°.                                                                    | 1     |
|      | Mentions that all sides of a rhombus are equal, hence SP = SR and concludes that $\angle$ PRS = $\angle$ SPR = 40°.                                               | 1     |
|      | Mentions angle sum property of a triangle and calculates ∠RSP as 100°.                                                                                            | 1     |
| 28   | Assumes the interior angle and the exterior angle as 4 $x^{\circ}$ and $x^{\circ}$ , respectively, and writes the equation as 4 $x^{\circ}$ + $x^{\circ}$ = 180°. | 1     |
|      | Solves the above equation for x to get $x = 36^{\circ}$ and $4x = 144^{\circ}$ .                                                                                  | 1     |





| Q.No | What to look for                                                                  | Marks |
|------|-----------------------------------------------------------------------------------|-------|
|      | Calculates the number of sides as 10.                                             |       |
|      | The calculation may look as follows:                                              |       |
|      | $\frac{360^{\circ}}{\text{Exterior angle}} = \frac{360^{\circ}}{36^{\circ}} = 10$ |       |

## **End of Questions in Paper**